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Abstract 

Understanding the re ationship between “habitats” and the distribution of fishes is critica to 

effective survey design and spatia management. Determining reef fish habitat uti ization 

patterns from passive acoustic arrays is cha enging because: (1) habitat c assifications must be 

meaningfu to the species; (2) the array must contain the species’ home range; and, (3) the 

probabi ity of detection may differ amongst habitats within the array. We conducted a mu ti= 

year tracking study in the marine protected areas (MPAs) of Dry Tortugas, F orida, using a 

ca ibrated passive acoustic array dep oyed over habitats c assified by type (reef, rubb e, sand), 

rugosity (high, medium, ow re ief), and patchiness (contiguous, spur=and=groove, iso ated). Our 

design contro ed for differences between individua s, die and edge effects, and detection gaps 

resu ting from the non= inear re ationship between acoustic tag detection probabi ities as a 

function of distance from the receiver. We found red and b ack groupers preferred high re ief 

reef habitats, whereas mutton and ye owtai snappers preferred ow=re ief contiguous reef 

habitats. By identifying critica habitats for exp oited species, our ana ysis may faci itate more 

efficient fishery=independent samp ing and MPA designs. 
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Introduct on 

Techno ogica advances in acoustic and sate ite te emetry, data assimi ation and 

computationa methods have evo ved to the point where the dynamic spatia re ationships 

between fishes and their environments are now a standard part of the fisheries management 

exicon (e.g., B ock et a . 2016). Fisheries management p ans in the United States are required to 

forma y define areas of “essentia fish habitat” and “critica habitat” (MSRA 2006). Fish 

movements within a seascape to satisfy demographic (i.e., growth, reproductive and 

survivorship) processes may be inf uenced by the quantity and avai abi ity of specific habitats 

(McIntyre & Wiens 1999; Kah er et a . 2001). Individua s may se ect for habitats that improve 

their fitness due to greater food avai abi ity, decreased predation risks, or ower metabo ic costs 

(MacArthur & Pianka 1966). Food=va ue theory (Stenger 1958; Wi son 1975) and anima cost= 

benefit ana yses (Brown 1964) suggest that resource avai abi ity p ays a major ro e in 

determining anima home range size and over ap. A better understanding of habitat use by cora 

reef fishes is vita to inform scientists and decision=makers, as reef fish are eco ogica y and 

economica y va uab e, but are especia y vu nerab e to habitat degradation from fishing, coasta 

deve opment, and c imate changes. 

Spatia resource protection strategies such as Marine Protected Areas (MPAs) have been 

wide y emp oyed in cora reef ecosystems to ba ance competing use interests, protect cora s and 

promote sustainab e fisheries (Bohnsack et a . 2004; Meester et a . 2004). In theory, we = 

designed no=take MPAs wi promote the accumu ation of spawning biomass and enhance 

prospects for arva export and the spi over of exp oitab e fish into adjacent areas open to fishing 

(Au t et a . 2006; 2013). Fai ure to a ign MPAs borders with natura boundaries to movement or 

inc ude critica habitats may reduce MPA effectiveness by increasing the ike ihood of adu t fish 
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crossing reserve boundaries and becoming vu nerab e to exp oitation (Chateau & Wantiez 2008; 

Farmer & Au t 2011). Fish movements may occur at a range of sca es, from sma =sca e habitat 

use (100s of m) to broad=sca e movements (100s of km). Many reef fish species have broad= 

sca e ontogenetic habitat shifts, often motivated by a desire to ba ance morta ity risk and growth 

opportunities (Dah gren & Egg eston 2000; Gro et a . 2014). Increased mating opportunities, 

especia y at spawning aggregation sites, may a so ead to broad=sca e adu t migration (Farmer & 

Au t 2011; Stump et a . 2017). A though broad=sca e movement patterns are somewhat 

understood within the context of ife history demands, our understanding of fish habitat 

preferences and short term movements within a dai y home range are imited (Boström et a . 

2011). The presence of preferred benthic habitats (bottom=up contro ) may have a greater effect 

on reef fish popu ations than protection from fishing (top=down effect) in MPAs (Russ et a . 

2015). By containing preferred habitats within an MPA, its carrying capacity is maximized, 

spi over to nearby preferred habitats is reduced, and ost fishing opportunities are minimized. 

Acoustic te emetry has become a popu ar too for examining in detai fish movements and 

habitat use at a variety of sca es in estuarine, cora reef, and coasta marine environments (review 

in Heupe et a . 2006). Mu tip e active tags can be re eased and passive receiver arrays can be 

positioned over re ative y broad geographic areas such that detection ranges over ap, a owing 

researchers to expand upon the basic occupancy (presence/absence) statistics recorded by 

individua receivers (MacKenzie et a . 2006; Topping et a . 2006; Dresser & Kneib 2007; Hedger 

et a . 2008a, 2008b; Farmer & Au t 2011). Recent studies have indicated that detection rates are 

hierarchica non= inear functions of tag distances from receivers (Roy e & Dorazio 2009; We sh 

et a . 2012; Farmer et a . 2013). 
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Many “habitat uti ization” studies using acoustic tracking have either: (1) assumed 

probabi ity of tag detection was equa across habitats (e.g., Farmer & Au t 2011; O’Too e et a . 

2011; Munroe et a . 2014; Drymon et a . 2014; Wo fe & Lowe 2015); or, (2) restricted the 

ana ysis to subareas assumed to have a 100% detection probabi ity (e.g., Furey et a . 2013). In 

rea ity, the tag detection probabi ities are arge y defined by the position of the tag within the 

array of receiver’s over apping detection ranges (Farmer et a . 2013). In this study, we tagged 

and tracked severa species of cora reef fishes within an acoustic receiver array in the MPAs of 

Dry Tortugas, F orida, USA, and deve oped a nove statistica method that incorporates detection 

probabi ity as a function of tag distance to eva uate “preferentia habitat use” within home 

ranges. 

Methods 

Study Area.—The F orida sha ow cora reef ecosystem extends about 400 km southwest from 

Miami to the Dry Tortugas, and supports ucrative tourism and fishing industries (Au t et a . 

2005a; 2013). The iso ated reefs of the Dry Tortugas are ocated upstream of the F orida Keys, 

where the F orida Current merges into the Gu f Stream (F g. 1). The Dry Tortugas support the 

F orida Keys reef fishery with recruits from regiona spawning and density=dependent emigration 

of adu t biomass (Schmidt et a . 1999; Au t et a . 2006; Bryan et a . 2015). Because of growing 

stress on regiona fisheries and cora reefs (Au t et a . 1998; 2005b; 2009; Ha ac & Hunt 2007), 

in January 2007, the Nationa Park Service imp emented a no=take marine reserve (NTMR), or 

Research Natura Area (RNA), covering 158 km
2 

of prime sha ow=water reef habitat in the 

western ha f of Dry Tortugas Nationa Park (DTNP). The eastern ha f of DTNP (101 km
2
) has 

been c osed to commercia fishing, recreationa spearfishing, and obstering since the 1960s; 

however, it is open to recreationa hook=and= ine fishing. The RNA was designed as a sha ow= 
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water comp ement to the Tortugas North and South Eco ogica Reserves (TNER and TSER), 

estab ished in 2001 by the Nationa Oceanographic and Atmospheric Administration (NOAA) in 

the F orida Keys Nationa Marine Sanctuary (FKNMS). At the time of their imp ementation this 

was the argest regiona network of NTMRs in the United States (F g. 1). 

Depths and benthic habitats were determined using mu tibeam side=scan sonar, ground= 

truthing, LIDAR, and aeria photography. Fo owing methods described by Frank in et a . 

(2003), habitats were categorized within 100 m by 100 m grids as seagrass (SGRS), or 

contiguous (CONT), iso ated (ISOL), spur=and=groove (SPGR; cora ine spurs separated by sand 

grooves), or reef rubb e (RUBB) structures with either high (HR; >2 m), medium (MR; 0.5=2 m), 

or ow=re ief (LR; <0.5 m) profi e based on soundings and diver observations (F g. 2; Table 2). 

Acoustic Array.— From March 2006 to January 2007, 25 VEMCO VR2 (VEMCO Ltd., Nova 

Scotia, Canada; www.vemco.com) hydrophone=receivers were dep oyed in a 600=1000 m grid 

array in the Dry Tortugas (F g. 3). From January 2007 to Apri 2008, the array was expanded 

and reconfigured to provide better coverage of a range of cora habitats (F g. 3). Receivers 

provided coverage of the northwestern boundary of DTNP=RNA as we as some areas of TNER 

and FKNMS. Each omnidirectiona VR2 hydrophone functions as a submersed passive istening 

station, detecting and archiving ID codes, dates and times for acoustica y tagged fish that pass 

within range. Receivers were dep oyed between 4–34 m depth and mounted 5 m above the 

seaf oor to reduce exposure to benthic noise sources, avoid signa b ockage by habitat features, 

and to maintain a superior istening ang e for tagged cora reef fish. Probabi ity of detection 

within the arrays averaged 75% (Farmer et a . 2013). 

Te emetry Tagging and Tracking.— Red grouper (Epinephe us morio), b ack grouper 

(Mycteroperca bonaci), ye owtai snapper (Ocyurus chrysurus), mutton snapper (Lutjanus 
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ana is), tiger shark (Ga eocerdo cuvier), and horse=eye jack (Caranx atus) were captured using 

hook=and= ine gear and interna y tagged as described in Farmer & Au t (2011) and Farmer 

(2010). A imp anted VEMCO V=16 (www.vemco.com) acoustic tags were 58 mm ong and 16 

mm diameter and weighed 24 g. Tags were configured with randomized transmission times 

(Table 1), reducing the ike ihood of signa co isions with other tagged individua s within the 

array (Pincock & Voege i 2002). These re ative y short de ay times increased the probabi ity of 

tag transmissions when in range of specific receivers (Løkkeberg et a . 2002). Vicry undyed 

27” Chromic gut ine with 2/0 curved need es were used to c ose incisions with 3=5 individua 

stitches. 

Prior to ana ysis, VR2 receiver data were corrected for tempora drift, adjusted for day ight 

savings time, fi tered for spurious detections, categorized by ‘die period’ (‘Dawn’: within 1 hr of 

sunrise, ‘Dusk’: within 1 hr of sunset, ‘Day’, or ‘Night’), and batched into short=term movement 

centers over 5 min interva s. These methods provided a mean positioning reso ution of 132 m 

for stationary tags and 237 m for moving tags (Farmer et a . 2013). Additiona y, a detections 

that occurred after the expected fina transmission date for the tag were exc uded from ana ysis 

to avoid spurious resu ts associated with transmissions from a dep eted tag battery. 

Habitat Uti ization Ana ysis.—Ca ibration work by Farmer et a . (2013) indicated that the 

probabi ity of detecting a tag within a given habitat is primari y dependent upon the distance of 

the habitat to the passive receiver. Tida phase p ayed a minor but significant ro e in detection 

probabi ity, but inc usion of wind speed, so ar phase, receiver depth, and habitat rugosity did not 

significant y improve mode fits (Farmer et a . 2013). We determined the probabi ity of 

detecting a tag within each 100 m × 100 m habitat ce by computing the distance of each 
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receiver to the midpoint of the ce and so ving for the probabi ity (p) of detection at distance (d) 

from Farmer et a . (2013): 

��.�� � . 	 
���.��×�	 ���� � = 1 + ��.�� � . 	 
���.��×�	 ���� 

The number of detections of each individua fish in each habitat ce were computed using 

the po y.counts function in the R v.3.2.3’s spatia Eco package (R Core Team 2013). To ensure 

that qua ity position fixes were eva uated, on y fish with >150 detections and 5=min activity 

centers at five or more distinct ocations were considered for ana ysis. Additiona y, because 

edge effects can distort interpretation of observed detection patterns (Farmer & Au t 2014), 

habitat preferences were on y eva uated for fish tagged near the center of the arrays (see Table 3 

and F g. 3). Habitat preferences were eva uated separate y for day and night. 

To eva uate preferentia habitat use, a genera ized additive mode for ocation, sca e, and 

shape (GAMLSS; Rigby & Stasinopou os 2001; 2005; Akantzi iotou et a . 2002) was deve oped 

using the R v.3.2.3’s gam ss package. The GAMLSS function a ows mode ing of the mean 

(“ ocation”) and other parameters of the distribution of the response variab e as inear 

parameteric or additive non=parametric functions of exp anatory variab es and random effects. 

Mode s are fit with maximum (pena ized) ike ihood functions. A GAMLSS assumes 

independent observations yi for i = 1, 2,…, n with probabi ity density function f(yi |θi) conditiona 

on θi where θi =( θi1, θi2,…, θip) is a vector of p parameters. We imp emented a GAMLSS with 3 

distribution parameters, denoted as *i, σi, and νi. The first two parameters, *i and σi, are 

characterized as ocation and sca e parameters; the fina parameter, νi, is characterized as a shape 

parameter. Let y⊤ = (y1, y2, . . . , yn) be the n ength vector of the response variab e. A so for k = 

1, 2, 3, 4, et gk(.) be known monotonic ink functions re ating the k
th 

parameter θk to exp anatory 

variab es by semi=parametric additive mode s given by 
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where µ, σ, ν and ηk and γjk, for j = 1, 2, . . . , Jk and k = 1, 2, 3, are vectors of ength n. A so Xk, 

for k = 1, 2, 3, are fixed design matrices whi e βk are the parameters vectors. The random effects 

parameters γjk have independent (prior) norma distributions. 

To avoid biasing ana ytica resu ts towards the fish with the highest number of detections, the 

percentage of each individua ’s detections within each habitat grid ce was used as the 

regression response variab e µ. Individua fish were mode ed as random effects γjk. Depth and 

habitat type within each ce were used as exp anatory variab es for g1 and g2. To account for the 

unequa probabi ities of detecting a fish at different sites within the passive arrays, the sum of the 

probabi ities of detection across a receivers (Σ[P(Detection)]) was used as an exp anatory 

variab e for g1, g2, and g3. As this weighting term was the sum of probabi ities across receivers, 

its va ue cou d exceed one in areas of high over ap of detection ranges. 

Because the response variab e was a percentage and the vast majority of habitat ce s had no 

detections for each individua , the GAMLSS mode was fit with a zero=inf ated beta distribution. 

Estimation of additive terms was accomp ished using the RS (Rigby & Stasinopou os 1996) 

backfitting a gorithm. A tota of 24 reasonab e GAMLSS mode s were exp ored for each species 

and die period (Table S-1), with the best GAMLSS mu, sigma, and nu formu a expressions 

se ected through AICc (Akaike 1974; Burnham & Anderson 2002). Se ected mode s satisfied 
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mode assumptions as evidenced by residua p ots and norma ized randomized quanti e residua 

p ots. Significant preferentia habitat use was eva uated by visua y inspecting the mean and 

95% confidence interva s of term p ots for the habitat c ass additive term. 

Results 

Data for acoustica y tagged fish are provided in Table 3. A tota of 45 red grouper were 

tagged, producing over two mi ion detections with a mean of 46,731 detections per fish over a 

mean tracking duration of 111 days. Three b ack grouper were tagged; one was never detected. 

The two b ack grouper that were tracked averaged 44,055 detections over 135 tracking days. 

Five ye owtai snapper were tagged, with a mean of 17,755 detections per fish over a mean 

tracking duration of 83 days. Four mutton snapper were tagged but two were never detected; one 

was tracked for 168 days and produced 21,805 tota detections. One tiger shark was tracked for 

47 days and was detected 4,978 times. One horse=eye jack was tracked for 218 days and was 

detected 21,856 times. 

Habitats were distributed non=uniform y within the detection range of the acoustic array. 

From March 2006 through January 2007, the detection range of the array contained most y 

contiguous ow re ief reef habitats and sand. Three receivers were ocated in sand habitats off 

the reef she f (see F g. 3). These three receivers were the on y receivers never to register reef 

fish detections. From January 2007 through Apri 2008, the array contained more contiguous 

ow re ief reef habitats. 

Tota percent use of habitats across individua s, without contro ing for detection 

probabi ities, is provided in Table 4. Of the 45 tagged red grouper, 24 met criteria for the habitat 

uti ization ana ysis. During the day and night, red grouper were detected primari y in contiguous 

ow re ief and sand habitats. Red grouper habitat use differed substantia y amongst individua s. 
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Of the three tagged b ack grouper, two met criteria for the habitat uti ization ana ysis. They were 

detected primari y in sand habitats regard ess of time of day. Of the five tagged ye owtai 

snapper, two met criteria for the habitat uti ization ana ysis. They were detected primari y in 

contiguous ow re ief habitats regard ess of time of day; detection patterns were re ative y 

consistent across individua s. Of the four tagged mutton snapper, one met criteria for the habitat 

uti ization ana ysis. It was detected a most exc usive y (>99%) in contiguous ow re ief habitats. 

The tagged tiger shark and horse=eye jack met criteria for inc usion in the ana ysis by virtue of 

their high mobi ity and substantia use of habitats within the core of the acoustic array. The 

tagged tiger shark was detected primari y in contiguous ow re ief and sand habitats regard ess of 

time of day. By day, the tagged horse=eye jack was detected primari y in iso ated medium re ief, 

contiguous ow re ief, and sand habitats. At night, it was detected primari y in sand and iso ated 

medium re ief habitats. 

The percent detections described in the previous paragraph are, in part, a byproduct of the 

configuration of the acoustic array re ative to habitats. Probabi ity of detection in a passive 

acoustic array is non=uniform (F g. 4). Tags in ocations c ose to individua receivers or within 

the detection range of mu tip e receivers have the highest probabi ity of detection (F g. 4). 

Receivers were configured to have over apping detection ranges at around the 50% probabi ity of 

detection (F g. 3). Detection ranges over apped in both array configurations, with the nearest 

receiver 787 m away, on average, in Mar 2006=Jan 2007, and 832 m away, on average, in Jan 

2007=Apr 2008. Inc usion of a weighted term for the cumu ative probabi ity of detection 

improved GAMLSS habitat uti ization mode fits for a species (Table 5). 

After contro ing for probabi ity of detection and depth (Table 5, F gs. S1-S12), some c ear 

habitat preferences were evident amongst the species tested (F gs. 5-6). In many cases, these 

https://mc06.manuscriptcentral.com/cjfas-pubs 

https://mc06.manuscriptcentral.com/cjfas-pubs


               

               

             

              

                

             

               

              

             

              

            

                  

                

                 

             

 

                 

                 

                

                 

                 

               

               

  

     

     

      

      

   

         

       

       

    

 

      

     

      

  

   

   

   

   

  

 

   

Draft 

Canadian Journal of Fisheries and Aquatic Sciences Page 12 of 39 

preferences were different from what might be inferred from the raw percentage of detections in 

each habitat, and some differed from habitat preferences reported previous y in the iterature. By 

day, red grouper preferentia y uti ized sha ow (<25 m) contiguous and sand habitats over 

iso ated and spur=and=groove high re ief habitats (F g. 5). By night, red grouper preferentia y 

uti ized contiguous high re ief and iso ated high re ief habitats (F g. 6). By day, b ack grouper 

preferentia y uti ized contiguous medium re ief habitats (F g. 5). B ack grouper appeared to 

preferentia y use sand habitats at night; however, no b ack grouper were detected at more than 

two ocations at night (F g. 6). Ye owtai snapper preferentia y uti ized deeper (>17 m) 

contiguous ow re ief habitats (F gs. 5-6). Mutton snapper preferentia y uti ized contiguous ow 

re ief habitats (F gs. 5-6). The tiger shark preferentia y uti ized sha ow (<17 m depth) 

contiguous high=re ief habitats, and underuti ized medium re ief habitats (F gs. 5-6). A though 

the tagged horse=eye jack was tagged near an edge of the acoustic array, it appeared to be high y 

mobi e and not subject to edge effects. By day, it preferentia y uti ized iso ated medium re ief 

and unc assified habitats on the edges of the array (F g. 5). At night, it preferentia y uti ized 

iso ated medium re ief and sand habitats and underuti ized ow re ief habitats (F g. 6). 

D scuss on 

In this study, we eva uated preferentia habitat use within the home ranges of a variety of reef 

fish. In Farmer & Au t (2011), fo owing methods presented in Winter & Ross (1981) and Lowe 

et a . (2003), a habitat se ection “suitabi ity” index (HSI) was determined for each tagged fish as 

the ratio between the percentage of 5=min activity centers in a habitat grid ce and the percentage 

of 200 m by 200 m ce s containing that identified habitat type within the fish’s MCP home 

range. However, ike most previous studies on reef fish habitat use inferred from passive 

acoustic monitoring, Farmer & Au t (2011) fai ed to account for differences in the probabi ity of 
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detection amongst habitats within a passive acoustic array can generate mis eading conc usions 

about habitat preferences. By doub ing the reso ution of our habitat categorizations and 

accounting for the non=uniform probabi ity of detection across habitats we have provided more 

robust estimates of “preferentia habitat use” for a broad suite of reef fish species in and around a 

network of no=take MPAs. Due to imitations on samp e size, our resu ts are most robust for red 

grouper. Other reef fish species were more difficu t to obtain at sizes arge enough to a ow 

interna tagging. 

Red grouper 

Previous studies of red grouper habitat use have found they are strong y associated with karst 

topography, especia y imestone so ution ho es formed by past freshwater incursion (Co eman et 

a . 1996). Adu t red grouper expose rocky habitat at these “grouper ho es” by excavating with 

their mouths and fanning with their fins to c ear away surficia sediment (Co eman et a . 2010). 

This “ecosystem engineering” provides habitat for themse ves as we as other reef=dwe ing 

organisms. Co eman et a . (2010) a so found that red grouper preferentia y uti ized sites with 

the greatest amount of architectura structure (e.g., greater spatia extent, number of entrances, 

and the presence of arge encrusting cora s). 

Red groupers and b ack groupers are opportunistic apex predators in reef community food 

webs (May et a . 1979). Red grouper are strong y associated with the bottom, and their diets 

may inc ude many types of invertebrates inc uding xanthid and portunid crabs, spiny obster, 

snapping shrimp, stomatopods, octopus, and squid and penaeid shrimp, especia y the pink 

shrimp (Penaeus duorarum), as we as utjanid and sparid fishes (Gudger 1929; Long ey & 

Hi debrand 1941; Moe 1969; Coste o & A en 1970). Our passive acoustic monitoring found 

die differences in red grouper habitat preferences. By day, red grouper preferentia y used 
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contiguous reef and adjacent sand habitats. By night, red grouper preferred high=re ief and 

contiguous reef habitats. High qua ity habitats (e.g., containing abundant food and she ter) may 

a ow anima s to maximize energy intake in a sma , undefended space; whereas arger, defended 

ranges may be advantageous in moderate qua ity habitats (Carpenter & MacMi en 1976). Red 

grouper are be ieved to be territoria (Moe 1969), and the authors have witnessed repeated 

conspecific interactions invo ving bucca f aring, dynamic co or changes from red to a pa e 

a most white co or pattern with pronounced striation, and booming voca izations. These 

interactions, which appear to take p ace on territoria edges as indicated by cruising/patro ing 

patterns by individua s, are typica y reso ved quick y with the sma er individua moving away 

from the territoria boundary. Such territoria behavior may force sma er individua s into ess 

desirab e habitats. Red grouper home range over ap was higher in high profi e habitats re ative 

to ow profi e habitats, and higher in iso ated habitats than in contiguous habitats (Farmer & Au t 

2011). High profi e cora reef habitats provide higher prey densities for red grouper (Au t et a . 

2007), and ike y contain more ocations for she ter. Contiguous habitats may provide a greater 

density of she ters and foraging areas than iso ated sites. Visua observations may be needed to 

determine the reasons for die shifts in habitat preference for red grouper. 

B ack grouper 

B ack grouper are a so opportunistic feeders, a though they are more piscivorous than red 

grouper and are ess associated with the bottom (Randa 1967). Farmer & Au t (2011) 

previous y reported b ack grouper uti ized iso ated and contiguous ow=re ief habitats; however, 

by doub ing the reso ution of our habitat c assifications and contro ing for the probabi ity of 

detection, we found that b ack grouper preferentia y uti ized contiguous medium re ief habitats. 

Our samp e size was imited and makes it difficu t to genera ize this finding; however, it is 
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supported by hundreds of hours of underwater observations in the Dry Tortugas with b ack 

grouper most common y observed at reef/sand interfaces, typica y in areas with edges or 

abundant gorgonian cover (N.A. Farmer, pers. obs.). Nocturna she tering in or near structure 

that obstructed tag signa transmission (Farmer et a . 2013: Figure 2) may have been responsib e 

for the imited b ack grouper movements observed at night, as no movements were detected at 

receivers near the edge of array that may have indicated movements beyond detection range. 

Ye owtai snapper 

Ye owtai snapper are semi=pe agic wanderers over the reef habitat (Moe 1972). Mu er et 

a . (2003) reported that adu t ye owtai snapper typica y inhabit sandy areas near offshore reefs. 

In the Dry Tortugas, ye owtai snapper preferentia y uti ized contiguous ow re ief reef 

structures. The reasons for this habitat preference are unc ear; however, it may provide them 

with access to fish, crustaceans, and mo usks (Randa 1967; Piedra 1969) as we as 

ho op ankton such as arva stages, pe agic mo usks and po ychaetes, and ge atinous 

invertebrates (Schroeder 1980; Parrish 1987). 

Mutton snapper 

Mutton snapper are known to associate with a wide variety of habitats, inc uding reef, sand, 

seagrass, and cora rubb e (Randa 1967). They are re ative y mobi e reef predators (Farmer & 

Au t 2011), cruising over many habitats and foraging active y throughout the day (Mue er et a . 

2005). In this study, a tagged mutton snapper preferentia y uti ized contiguous ow re ief 

habitats and underuti ized contiguous high re ief habitats. Our samp e size was imited, making 

it difficu t to genera ize this finding; however, it is supported by hundreds of hours of underwater 

observations of mutton snapper cruising a ong ow re ief reef and sand interfaces (N.A. Farmer, 

pers. obs.). 
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Tiger shark 

The tiger shark is among the argest (maximum size >800 kg, up to 5.5 m tota ength, TL) 

apex predatory fish found throughout tropica seas (Springer 1938). Hawaiian juveni e tiger 

sharks appear to forage over very arge areas (>100 km
2
) to obtain sufficient resources (Meyer et 

a . 2009); visits to specific receiver sites were typica y brief (mean duration 3.3 min) and 

interspersed with absences of weeks, months, or years. By contrast, the tagged tiger shark in this 

study demonstrated high short=term (47 d) residency in an approximate y 25 km
2

area. Its 

detection frequency was simi ar to that of reef fish tracked in the same ocation, a though it was 

more mobi e and ess strong y affi iated with a home range center than groupers and snappers 

(Farmer & Au t 2011; Farmer & Au t 2014). Receiver detection patterns were consistent with 

previous findings that tiger sharks use short=term home ranges containing important foraging 

grounds, and their movements in these sha ow water habitats (< 300 m) are characterized by 

frequent oops and turns (Ho and et a . 1999; Heithaus et a . 2007). The tiger shark was detected 

most frequent y during crepuscu ar hours, suggesting increased movement during periods of 

reduced ight. 

In this study, the tiger shark preferentia y uti ized sha ow (<17 m) contiguous high=re ief 

habitats and underuti ized medium re ief habitats. Tiger sharks undergo an ontogenetic shift in 

diet, with sma individua s primari y feeding on fish and arge individua s consuming fish and a 

variety of arge=bodied species (Lowe et a . 1996; Heithaus et a . 2001). High=re ief habitats in 

the Dry Tortugas contain some of the highest fish densities on the F orida reef tract (Au t et a . 

2007). Increased samp ing is needed to a ow genera ization of these findings and to determine if 

the Dry Tortugas MPA network contains important intergenerationa nursery habitats or foraging 

grounds for tiger sharks (Castro 1993). 
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Horse6eye jack 

The horse=eye jack is a poor y studied pe agic fish that is common y found schoo ing in the 

subtropica At antic Ocean near reefs and offshore oi rigs (C aro 1994; Lieske & Myers 1994). 

Previous y tagging studies have been unsuccessfu and inferred horse=eye jacks to be high y 

mobi e with ow site fide ity (Randa 1962; Chapman & Kramer 2000). Adu ts feed on fishes, 

shrimps, and other invertebrates (Berry & Smith=Vaniz 1978). Our tagged horse=eye jack was 

broad y ranging, moving over sand between iso ated medium re ief reef habitats. Our samp e 

size was imited, making it difficu t to genera ize this finding; however, it is supported by 

hundreds of hours of underwater observations of horse=eye jacks moving across sand and 

schoo ing above iso ated reef pinnac es (N.A. Farmer, pers. obs.). 

Management Imp ications 

Know edge of the distribution of fish abundance to habitats, or what are “preferentia or 

essentia habitats” for fishes, is critica to the efficient and cost=effective design of fishery= 

independent surveys, eva uation of spatia y=exp icit management performance, and MPA design 

(Meester et a . 2004; Farmer & Au t 2011). Accurate and precise fishery=independent surveys 

designed to assess mu tispecies reef fish stocks often strategica y emp oy habitat as an 

environmenta covariate in their stratified samp ing designs. An improved understanding of fish= 

habitat re ationships wi a ow cost=effective refinements of survey samp e a ocations (Smith et 

a . 2011; Bryan et a . 2016). Efficient spatia management strategies require protected areas to 

contain critica habitats and to have boundaries a igned with natura barriers to movement, 

reducing the spi over of spawning stock biomass into fishab e areas. Sufficient y arge MPAs 

that contain critica habitats can provide substantia protection, even to high y mobi e predators 

(White et a . 2017). To maximize fisheries benefits, no=take MPAs shou d contain important 
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habitats that a ow organisms to maximize growth and reduce risk of predation (MacArthur & 

Pianka 1966). 

Summary 

Obtaining robust estimates of habitat uti ization from a passive acoustic array is cha enging. 

The array must be arge enough to contain the home range of the tagged fish (Farmer & Au t 

2011), but with receiver spacing sufficient to provide position fixes within the reso ution of the 

habitat categorizations (Farmer et a . 2013). Centers of activity shou d be determined with 

sufficient tempora reso ution to provide meaningfu categorizations of habitat use, and shou d 

consider the non= inear spatia re ationship between detection probabi ity and distance of the 

acoustic tag to the receiver (Farmer et a . 2013). Simi ar y, the ana ysis of habitat uti ization 

shou d contro for edge effects (Farmer & Au t 2014) and account for the non=uniform 

probabi ity of detection at different habitats within the acoustic array. Most ana yses of habitat 

use by reef fish have ignored these factors, and have a so aggregated across individua s and time 

periods. By accounting for a of these potentia y confounding factors in a nested, zero=inf ated 

beta regression ana ysis, we have provided robust estimates of die habitat use for red grouper 

and additiona information for b ack grouper, ye owtai snapper, mutton snapper, tiger shark, 

and horse=eye jack. Eva uations of habitat use for these species cou d be further improved 

through: (1) increased samp e size, (2) greater over ap among receiver detection ranges, (3) use 

of co= ocated tags to improve positioning reso ution, (4) signa arriva time computations to 

triangu ate position (e.g., VEMCO Positioning System), (5) higher reso ution habitat 

identification inc uding biotic cover (e.g., gorgonians and sea fans), and (6) better accounting for 

environmenta (e.g., wave state, tida phase) factors that may a so inf uence movement patterns. 
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There are severa emergent patterns from our ana ysis of reef fish preferentia habitat use that 

cou d be used to guide samp e a ocation in fishery=independent surveys as we as the design 

and eva uation of spatia management strategies such as no=take MPAs. Not surprising y, arge 

sand channe s appear to function as natura barriers to movement for many reef fish. Fishery= 

independent surveys designed for reef fish shou d a ocate the bu k of samp ing to the habitats 

with the highest variabi ity, with few samp es a ocated to sand habitats (Smith et a . 2011). 

Simi ar y, a igning MPA boundaries to and and arge sand channe s is recommended to natura y 

reduce reef fish spi over into fishab e areas. The tagged red and b ack groupers studied 

demonstrated preferences for high re ief habitats. By contrast, the tagged mutton and ye owtai 

snappers studied demonstrated preferences for ow=re ief contiguous reef habitats. Prey biomass 

(Au t et a . 2007) and avai ab e she ter (N.A. Farmer, pers. obs.) are often highest in high=re ief 

habitats, and they may maximize opportunities for growth for arge=bodied species. Our findings 

suggest that high=re ief areas (contiguous and iso ated) shou d receive the highest samp e 

a ocation in fishery=independent surveys and shou d be we =represented within no=take MPAs 

designed to conserve grouper spawning stock biomass; however, ow=re ief contiguous reef 

habitats p ay a critica ro e in maintaining snapper biomass and movement pathways for a variety 

of species. These findings reinforce the importance of protecting a mosaic of reef habitats across 

a broad spatia domain (Parrish 1989; Fried ander et a . 2006). 
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1 

2 

Table . Specific tions for 69 kHz VEMCO V16 coustic t gs utilized in this study. Note 3H 

t gs h ve higher tr nsmission strength but shorter b ttery life. 

Fish IDs Year n Type 
Poweroutput 

( µPa@ m) 

Random 

delay (s) 

862–872 2006 33 3H 158 20–69 

170–194 2006 23 3H 158 30–79 

32–59 2007 20 3H 158 60–180 

873–884 2007 12 4H 153 20–69 

3 

1 
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4 Table 2. Ch r cteristics of h bit t c tegoriz tions used in this study, d pted from Fr nklin et l. (2003). 

Category Type Habitat Type 
Relief 

Code 
Characteristics 

Uncl ssified UNK Unknown n/ Uncl ssified h bit t 

S nd SAND S nd n/ Predomin ntly s nd; no h rdbottom present. 

Se gr ss SGRS Se gr ss n/ Predomin ntly se gr ss; no h rdbottom present. 

Contiguous CONT 
Low-relief h 

bottom 

rd-
LR 

Contiguous h rd-bottom substr te 

Low structur l complexity nd relief 

Usu lly domin ted by gorgoni ns 

Medium-profile Contiguous reef substr te 
MR 

reef Moder te vertic l relief nd complexity 

High-relief (>2 m), contiguous reef h bit t 

Reef Terr ce HR Abund nt l rge mushroom nd pl ty cor ls 

Prim rily loc ted on western sides of b nks 

Spur nd Groove SPGR Low-relief spur Low-profile cor lline spurs sep r ted by s nd grooves 
LR 

nd groove Bro d spurs up to 5 m wide with low vertic l relief 

H rd-bottom ggreg tions bounded by s nd 
Rocky outcrop MR 

Moder te vertic l relief (0.5 to 2.0 m) 

High-relief spur 

nd groove 
HR 

High-profile cor lline spurs sep r ted by s 

High vertic l relief (>2 m) nd complexity 

Diverse ssembl ge of reef benthos 

nd grooves 

Isol ted ISOL P tchy h rd-

bottom in s nd 
LR 

S nd pl ins with p tches of h rd-bottom 

Low vertic l relief (<0.5 m) nd complexity 

Aggreg te or clusters of dome-sh ped reefs 

P tch reef MR Interspersed with s nd 

Moder te vertic l relief nd substr te complexity 

Pinn cle reef HR High-complexity p tches rising to 15 m depth 

2 
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5 Table 3. D t for fish fitted with coustic tr nsmitters. ‘T g’: type of VEMCO t g (see T ble 1); 

6 ‘Code’: unique identific tion code; ‘Species’: fish species (RG: Red Grouper, BG: Bl ck 

7 Grouper, MS: Mutton Sn pper, YTS: Yellowt il Sn pper, HEJ: Horse-eye J ck, TS: Tiger 

8 Sh rk); ‘TL’: tot l length in cm; ‘W’: weight in kg; ‘T gged’: d te of c pture; ‘L st Detect’: d te 

9 of fin l detection; ‘D ys’: d ys between c pture nd fin l detection; ‘T g Life’: nticip ted 

10 b ttery life of t g; ‘Detects’: tot l recorded detections; ‘Rec’: number of receivers registering 

11 detections; ‘Edge’: likelihood of edge effects b sed on t gging loc tion rel tive to edge of rr y. 

12 Note d tes follow mm/dd/yy form t. 

13 

Tag Code Species TL W Tagged Last Detect Days Tag Life Detects Rec. Edge 

3H 36 RG 64 3.6 1/7/07 1/25/07 18 130 2,051 15 

3H 37 RG 47 1.4 1/7/07 7/5/07 179 130 64,672 3 

3H 41 RG 47 1.1 1/7/07 7/5/07 179 130 75,732 3 

3H 42 RG 48 1.8 1/7/07 7/5/07 179 130 21,823 4 

3H 47 RG 48 1.8 1/7/07 1/18/07 11 130 1,534 17 

3H 51 RG 66 5.4 2/27/07 8/3/07 157 130 12,329 6 

3H 170 RG 61 9.0 3/7/06 6/8/06 93 62 708 2 

3H 171 RG 60 6.5 3/7/06 6/13/06 98 62 2,359 4 

3H 172 RG 49 4.0 3/7/06 3/10/06 3 62 471 8 

3H 173 RG 49 4.0 3/7/06 6/7/06 92 62 613 5 

3H 175 RG 53 6.0 3/7/06 6/11/06 96 62 5,190 2 Y 

3H 176 RG 55 6.5 3/7/06 6/8/06 93 62 4,512 4 

3H 177 RG 50 4.5 3/7/06 6/4/06 89 62 373 2 

3H 178 RG 65 10.0 3/7/06 6/5/06 90 62 2,466 2 

3H 179 RG 57 6.0 3/27/06 4/19/06 23 62 229 14 

3H 180 RG 55 6.0 3/27/06 5/6/06 40 62 382 5 Y 

3H 181 RG 49 4.0 3/27/06 4/9/06 13 62 880 9 Y 

3H 183 RG 48 4.5 3/28/06 7/4/06 98 62 8,491 3 Y 

3H 186 RG 51 6.0 3/27/06 6/26/06 91 62 12,077 8 

3H 187 RG 50 4.5 3/27/06 6/27/06 92 62 4,806 8 

3H 189 RG 59 8.0 3/7/06 6/9/06 94 62 28,035 1 Y 

3H 190 RG 62 9.0 3/6/06 6/15/06 101 62 55,092 2 Y 

3H 191 RG 51 4.0 3/6/06 6/7/06 93 62 36,324 4 Y 

3H 194 RG 54 6.5 3/6/06 6/8/06 94 62 12,928 4 Y 

3H 863 RG 51 6.5 3/5/06 6/8/06 95 56 6,728 3 Y 

3H 864 RG 55 6.0 3/6/06 6/6/06 92 56 44,890 2 Y 

3H 867 RG 55 5.5 3/5/06 6/2/06 89 56 42,058 4 Y 

3H 868 RG 49 4.5 3/5/06 6/1/06 88 56 24,533 2 Y 

3H 869 RG 60 - 3/6/06 6/1/06 87 56 21,703 2 Y 

3H 870 RG 45 2.5 3/5/06 3/30/06 25 56 2,530 7 

3H 871 RG 57 8.0 3/5/06 5/20/06 76 56 402 2 Y 

3H 872 RG 53 4.5 3/5/06 5/23/06 79 56 70,316 4 Y 

4H 873 RG 48 1.8 1/4/07 10/11/07 280 570 199,933 2 

4H 874 RG 60 2.9 1/5/07 10/10/07 278 570 313,237 5 

4H 875 RG 52 2.0 1/4/07 10/11/07 280 570 205,442 5 

4H 877 RG 57 2.7 1/4/07 10/11/07 280 570 124,104 4 

4H 878 RG 48 1.8 1/4/07 2/17/07 44 570 21,144 9 

4H 880 RG 49 1.8 1/4/07 9/30/07 269 570 35,439 3 

4H 881 RG 50 1.8 1/4/07 10/11/07 280 570 261,025 7 

4H 884 RG 53 2.0 1/4/07 10/11/07 280 570 272,798 5 

3H 184* RG 55 6.5 3/27/06 5/9/06 43 62 4,915 7 

3H 185* RG 55 5.0 3/27/06 5/9/06 43 62 8,895 7 

3H 862* RG 54 4.5 3/6/06 5/31/06 86 56 73,704 3 Y 

3H 865* RG 56 8.0 3/5/06 4/7/06 33 56 14,616 6 

3 
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3H 866* RG 53 5.0 3/6/06 5/11/06 66 56 426 2 Y 

3H 55 YTS 55 1.8 4/24/07 9/24/07 153 130 10,566 6 Y 

3H 57 YTS 52 1.4 7/11/07 10/11/07 92 130 31,804 7 

3H 58 YTS 48 0.9 4/24/07 7/1/07 68 130 2,238 3 Y 

3H 59 YTS 52 0.9 4/24/07 7/10/07 77 130 4,791 5 

3H 182 YTS 52 2.5 3/28/06 4/23/06 26 62 39,374 9 Y 

3H 40 MS 53 4.5 4/25/07 NA 0 130 0 0 

3H 50 MS 43 2.5 10/9/07 10/13/07 4 130 183 6 

3H 52 MS 49 2.0 10/9/07 NA 0 130 0 0 

3H 53 MS 70 5.4 4/25/07 10/10/07 168 130 21,805 18 

3H 35 BG 57 4.5 10/9/07 NA 0 130 0 0 

3H 43 BG 75 6.6 1/7/07 7/5/07 179 130 72,644 6 

3H 174 BG 50 5.5 3/7/06 6/6/06 91 62 11,466 4 

3H 54 HEJ 71 3.6 4/24/07 11/28/07 218 130 21,856 16 Y 

3H 48 TS 274 X 2/28/07 4/16/07 47 130 4,978 21 

14 ++++Denotes fish tr cked by 2006 ( bove) nd 2007 receiver configur tions (below). (*) denotes rec ptured. TL= 

15 Tot l Length (cm), W= Weight (kg), Rec = Receivers detecting fish. 

16 
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Table 4. Me n percent ge of tot l detections by h bit t type, by species. H bit t composition within detection r nge of receivers 

provided for reference. H bit t grids were c tegorized s unknown (UNK), s nd, se gr ss (SG), contiguous reef (CONT), isol ted 

reef (ISOL), spur- nd-groove reef (SPGR; cor lline spurs sep r ted by s nd grooves), or reef rubble (RUBB) with high (HR; >2 m), 

medium (MR; 0.5-2 m), or low-profile relief (LR; <0.5 m) following Fr nklin et l. (2003). 

Mean Percent of Total Detections by Habitat Types (%) 
CONT_ CONT_ CONT_ ISOL_ ISOL_ ISOL_ SPGR_ SPGR_ RUBB_ 

Species Period SGRS SAND UNK 
LR MR HR LR MR HR LR HR LR 

Red D y 68 1 1 0 0 0 9 0 0 0 21 0 

grouper Night 52 2 1 0 0 0 9 0 0 0 35 0 

Bl ck D y 1 0 0 0 0 0 0 0 0 0 99 0 
1 

grouper Night 0 0 0 0 0 0 0 0 0 0 100 0 

Yellowt il D y 93 0 1 0 3 1 0 0 0 0 2 0 

sn pper Night 96 0 1 0 1 1 0 0 0 0 1 0 

Mutton D y 99 0 0 0 0 0 0 0 0 0 1 0 

sn pper Night 100 0 0 0 0 0 0 0 0 0 0 0 

D y 63 1 2 9 0 0 0 0 0 0 21 4 
Tiger sh rk 

Night 59 1 4 11 1 1 0 0 0 0 21 1 

Horse-eye D y 29 0 0 0 44 0 0 0 0 0 22 5 

j ck
2 

Night 11 0 0 0 40 0 0 0 0 0 44 4 

Detectable Range 
35 30 4 4 5 6 3 3 0 1 3 23 

(M r 2006-J n 2007) 

Detectable Range 
53 47 5 4 4 4 2 2 0 0 2 18 

(J n 2007-Apr 2008) 

1
No bl ck grouper were detected t >2 loc tions t night 

2
No horse-eye j ck were tr cked without potenti l edge effects 
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Table 5. AICc-selected GAMLSS model fits expl ining non-uniform diel h bit t utiliz tion 

preferences. Note: ‘pDetectSum’ denotes the cumul tive prob bility of detection t p rticul r 

grid-cell summed cross ll receivers; ‘cs’ denotes cubic spline, nd ‘p’ denotes pen lized 

spline. 

GAMLSS Model Parameters 

Species Diel Period 8 σ ν 

ps(Depth) H bit tType H bit tType 

D y H bit tType pDetectSum pDetectSum 

pDetectSum 
Red grouper 

Depth H bit tType H bit tType 

Night H bit tType pDetectSum pDetectSum 

pDetectSum 

cs(Depth, df = 5) Depth pDetectSum 

D y H bit tType H bit tType 

pDetectSum pDetectSum 
Bl ck grouper 

Depth pDetectSum pDetectSum 

Night H bit tType 

pDetectSum 

cs(Depth, df = 3) H bit tType H bit tType 

D y H bit tType pDetectSum pDetectSum 

Yellowt il pDetectSum 

sn pper Depth Depth pDetectSum 

Night H bit tType H bit tType 

pDetectSum pDetectSum 

Depth Depth pDetectSum 

D y H bit tType H bit tType 

pDetectSum pDetectSum 
Mutton sn pper 

Depth H bit tType H bit tType 

Night H bit tType pDetectSum pDetectSum 

pDetectSum 

Depth Depth pDetectSum 

D y H bit tType H bit tType 

pDetectSum pDetectSum 
Tiger sh rk 

Depth Depth pDetectSum 

Night H bit tType H bit tType 

pDetectSum pDetectSum 

cs(Depth, df = 5) H bit tType H bit tType 

D y H bit tType pDetectSum pDetectSum 

pDetectSum 
Horse-eye J ck 

cs(Depth, df = 5) H bit tType H bit tType 

Night H bit tType pDetectSum pDetectSum 

pDetectSum 
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FIGURE CAPTIONS 

Figure 1. Locatio map of the Dry Tortugas, Florida (star), showi g fishable a d ma ageme t 

zo es i cludi g fishable waters i Dry Tortugas Natio al Park (DTNP) a d Florida Keys 

Natio al Mari e Sa ctuary (FKNMS); a d, o-take Research Natural Area (RNA) Tortugas 

North a d South Ecological Reserves (TNER a d TSER). Passive acoustic receiver deployme t 

locatio s for March 2006 to Ja uary 2007 (ope crosses) a d Ja uary 2007 to April 2008 (black 

crosses) are show relative to bathymetry. I set also shows locatio of Dry Tortugas, Florida, 

relative to regio al ocea ographic curre ts measured by satellite drifters i the Gulf of Mexico 

(gray track li es). Drifter data from Atla tic Ocea ographic a d Meteorological Laboratory 

Global Drifter Program. Bathymetric data from NOAA Natio al Ocea Service a d U ited 

States Geological Survey Light Detectio a d Ra gi g (LIDAR) surveys. 

Figure 2. Habitats categorized by vertical relief a d degree of patchi ess followi g Fra kli et 

al. (2003) as seagrass (SGRS), co tiguous reef (CONT), isolated reef (ISOL), spur-a d-groove 

reef (SPGR; coralli e spurs separated by sa d grooves), or reef rubble (RUBB) with high (HR; 

>2 m), medium (MR; 0.5-2 m), or low-profile relief (LR; <0.5 m). 

Figure 3. Passive acoustic receiver deployme t locatio s for March 2006 to Ja uary 2007 a d 

from Ja uary 2007 to April 2008 with 50% probability of detectio ra ges relative to be thic 

habitats. Habitats categorized at 100 m resolutio as u k ow (white), sa d, seagrass (SGRS), 

co tiguous reef (CONT), isolated reef (ISOL), spur-a d-groove reef (SPGR; coralli e spurs 

separated by sa d grooves), or reef rubble (RUBB) with high (HR; >2 m), medium (MR; 0.5-2 

m), or low-profile relief (LR; <0.5 m) followi g Fra kli et al. (2003). Labels correspo d to tag 

codes for tagged red grouper (red), black grouper (gray), yellowtail s apper (yellow), mutto 

s apper (pi k), horse-eye jack (blue), a d tiger shark (light blue). 

Figure 4. Cumulative receiver detectio probabilities relative to March 2006-Ja uary 2007 a d 

Ja uary 2007-April 2008 receiver deployme ts. Note that ot all locatio s i a passive array 

have a equal probability of detectio , a d differe t array spaci g ca result i differe t 

cumulative probabilities. 

https://mc06.manuscriptcentral.com/cjfas-pubs 

https://mc06.manuscriptcentral.com/cjfas-pubs


                

             

 

               

                

          

 

     

        

     

          

    

Draft 

Page 33 of 39 Canadian Journal of Fisheries and Aquatic Sciences 

Figure 5. Species habitat utilizatio duri g the day, i dicated by GAMLSS term plots showi g 

mea a d 95% co fide ce limits (gray box) a d residuals (ope circles). 

Figure 6. Species habitat utilizatio duri g the ight, i dicated by GAMLSS term plots 

showi g mea a d 95% co fide ce limits (gray box) a d residuals (ope circles). Note o black 

grouper were detected at greater tha two locatio s at ight. 
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Figure 1. Location map of the Dry Tortugas, Florida (star), showing fishable and management zones 
including fishable waters in Dry Tortugas National Park (DTNP) and Florida Keys National Marine Sanctuary 
(FKNMS); and, no-take Research Natural Area (RNA) Tortugas North and South Ecological Reserves (TNER 
and TSER). Passive acoustic receiver deployment locations for March 2006 to January 2007 (open crosses) 
and January 2007 to April 2008 (black crosses) are shown relative to bathymetry. Inset also shows location 
of Dry Tortugas, Florida, relative to regional oceanographic currents measured by satellite drifters in the Gulf 

of Mexico (gray track lines). 
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Figure 2. Habitats categorized by vertical relief and degree of patchiness following Franklin et al. (2003) as 
seagrass (SGRS), contiguous reef (CONT), isolated reef (ISOL), spur-and-groove reef (SPGR; coralline spurs 
separated by sand grooves), or reef rubble (RUBB) with high (HR; >2 m), medium (MR; 0.5-2 m), or low-

profile relief (LR; <0.5 m). 
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Figure 3. Passive acoustic receiver deployment locations for March 2006 to January 2007 and from January 
2007 to April 2008 with 50% probability of detection ranges relative to benthic habitats. Habitats 

categorized at 100 m resolution as unknown (white), sand, seagrass (SGRS), contiguous reef (CONT), 
isolated reef (ISOL), spur-and-groove reef (SPGR; coralline spurs separated by sand grooves), or reef rubble 
(RUBB) with high (HR; >2 m), medium (MR; 0.5-2 m), or low-profile relief (LR; <0.5 m) following Franklin 
et al. (2003). Labels correspond to tag codes for tagged red grouper (red), black grouper (gray), yellowtail 

snapper (yellow), mutton snapper (pink), horse-eye jack (blue), and tiger shark (light blue). 
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Figure 4. Cumulative receiver detection probabilities relative to March 2006-January 2007 and January 
2007-April 2008 receiver deployments. Note that not all locations in a passive array have an equal 
probability of detection, and different array spacing can result in different cumulative probabilities. 
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Figure 5. Species habitat utilization during the day, indicated by GAMLSS term plots showing mean and 
95% confidence limits (gray box) and residuals (open circles). 
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Figure 6. Species habitat utilization during the night, indicated by GAMLSS term plots showing mean and 
95% confidence limits (gray box) and residuals (open circles). Note no black grouper were detected at 

greater than two locations at night. 
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